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In torsional oscillations of a layered spherical shell, the eigenfrequencies ,,,w, of over- 
tones, for given angular order n, lie near to mr/y, where wz is the number of the overtone 
and y the time taken for a shear wave to travel through the shell along a radius. The graph 
of y,,,o,/n - m against m is here called the pattern of eigenfrequencies. It is shown in a 
numerical experiment that this pattern is very sensitive to variations in layer thickness. 

1. INTRODUCTION 

In 1959 Alterman, Jarosh, and Pekeris [l] published a very useful analysis of the 
problem of free oscillations of a sphere. For purely torsional axially-symmetric 
oscillations of angular frequency CO, of a spherically symmetric, nonrotating, perfectly 
elastic isotropic sphere of density p(r) and rigidity p(r), where r is radius, the spherical 
polar coordinates (r, 0, $) separate, and the displacement at a general point may be 
expressed as 

(0, 0, -ww, (1.1) 

where 

$ = W(r) P,(cos e), (1.2) 

P, being a Legendre polynomial, and W(v) a solution of 

p (W” + ;2 w) + p’ (wj - ; w> + [pwn2 - +; *) pI w = 0. (1.3) 

* Permanent address: Emmanuel College, University of Cambridge, Cambridge, England CB2 
3AP. 
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The only nonzero component of stress is 

r~=~=~(w~-~w)~P,(cose). (1.4) 

If we consider a vibrating shell, free from stress at its bounding surfaces r = a, 
r = b, the eigenfrequencies of overtones corresponding to a specified (Legendre) 
order n are those of the Sturm-Liouville system: 

p, (w. + + wj + p’ (W’- ; w) + ]mwn2p - .(,I; ‘) pl w  = 0 (1.5) 

in a < r < b, with 

at r = a, r = b. 

This system can be reduced to normal form by the Liouville transformation: 

W = rZ/M, t = ’ dr/fi(r), 
s a 

/j = pllzp-112, M = r2plP~P. 

(1.6) 

(1.7) 

(1.8) 

Then, provided p does not vanish in (d, b) and p, ~1’ are continuous in (a, b), it can be 
shown that the angular frequencies m~, of overtones are asymptotically given, for 
fixed n and large m, by 

2- mrr Tn*n - ( 1 Y 2+$+&+o(&), (1.9) 

where y = Jz dr/p and A and B are independent of m (see Anderssen, Cleary, and 
Osborne [2]). 

This statement is inadequate in two ways. On the one hand, Anderssen and Clear-y 
showed in 1974 [3] that angular frequencies computed for certain Earth-models 
do not fit well into formula (1.9), and that the fit becomes worse if discontinuities of 
p and p are accentuated. On the other hand, the restrictions needed on ~1 and p for 
(1.9) to hold [6] are too severe for seismologists, who want to consider Earth-models 
with internal surfaces of discontinuity. 

McNabb, Anderssen, and Lapwood [8] showed that if the Sturm-Liouville coeffi- 
cients are discontinuous the formula (1.9) no longer applies; then ,o,/(m+), 
instead of approaching asymptotically to unity, displays an irregular pattern indefi- 
nitely repeated. When there is only one discontinuity, the graph of I?aqJ(mr/y) is a 
sinusoidal curve. For this reason the effect was called a “solotone effect.” 

Sato and Lapwood have examined the solotone effect for spherical shells made up 
of uniform layers, for which the frequency equation can be obtained exactly in terms 
of spherical Bessel Functions [9, 10, 71. They have shown that the amplitude of the 
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oscillations in ,w,/(mn/y) is determined by the magnitude of the discontinuities, but 
the period and phase by the thicknesses and wave-speeds of the layers. In this they 
confirm work of Anderssen [4] and Wang, Gettrust, and Cleary [Ill. These authors 
have also shown that the solotone effect depends for its existence on internal reflections 
and resonances. It appears that for a given layering the pattern of eigenfrequencies is 
very sensitive to small changes in the thicknesses of the layers. 

In this paper we examine, with the help of a numerical experiment, the effect of 
small changes-in layer thicknesses alone-from a standard model. The standard is an 
averaged PEM-A, described by Dziewonski, Hales, and Lapwood [5]. We confirm 
that remarkable changes in the “eigenfrequency pattern” accompany very moderate 
changes in relative thicknesses of the layers of a three-layer shell. 

2. FORMULA FOR THE SOLOTONE DEVIATION S 

Consider a three-layer shell composed of three uniform spherical layers, as follows: 

(3) top layer r3 > r > r2 , density p3 , shear velocity j?, , 

(2) middle layer rz > r > r1 P2 rs 29 (2.1) 
(3) bottom layer rl > r > r,, Pl P 1. 

If RI is the reflection coefficient for a ray from region (1) impinging normally on the 
(1,2) boundary, then 

RI = 64% - ~2/32V@l/31 + PZPZ). 

Similarly we define R, and obtain 

(2.2) 

If we define 

s 

TP 
XP = OJ dr/P, P = 1, 2, 3, (2.3) 

rp-1 

and R; , R; as the reflection coefficients for oblique impact, then the frequency equation 
for overtones with the same angular order has been shown to be [lo]: 

sin(x, + x2 + x3) = R; sin(x, - x2 - x3) 

-I &. sino(, + x2 - x3) - R;Ri sit& - x2 + x3). (2.4) 

A zero-order approximation to (2.4) is obtained by neglecting R; , Ri ; it is 

xl -I- x2 -I- x3 = mm, m = 1, 2, 3 ,... . (2.5) 
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Then a first-order approximation comes from 

xl + x2 f x3 = rnr + 6, w-9 

where 6 is small, and the use of R, , R, as approximations for R; , Rh . Neglecting 
terms of order R,R, we get [7] 

S = ymwn/n- - m + (R,/rr) sin 2x1 - (R2/n) sin 2x3 := S’, (2.7) 

where 

Y = (Xl + x2 + X3YdJn * (2.8) . 

The expression S’, which represents S approximately as the superposition of 
two sinusoidal terms, gives a clearer view of its structure than do computed values of 
S, which may be obtained from precisely computed eigenfrequencies. It turns out 
that the values of S and S’ are rather insensitive to II, the (Legendre) order of the 
mode of oscillation. This is because when m is large the wavelength is 2r$/,w, + 
(a - b)/m, which is much smaller than the characteristic wavelength of the lateral 
variation of the mode, which is approximately b/n. Thus the wave does not feel the 
sphericity of the boundary constraint, behaving like a plane wave. 

We therefore compute S after neglecting Earth-curvature, and for the investigation 
of pattern changes we use the approximations 

(2.9) 

We adopt as our standard model A (which is to be perturbed) the averaged PEM-A, 
which has the following parameters [5, IO]: 

r3 : 6368 km, p3 : 4.51 km/s, p3 : 3.42 gin/cc, R, = 0.1516, 

r2 : 5951 km, /I2 : 5.30 km/s, p.2 : 3.95 gm/cc, R, = 0.2367, 

rl : 5701 km, & : 6.77 km/s, p1 : 5.01 gm/cc, 

r,, : 3485.7 km. 

Figure 2 shows the distribution of values of S for model A for m = 1, 2, 3,..., 60. 
The graph of S’, which we have not included here, differs very little from Fig. 2, 
except for m < 6. 

We observe two particular features of Fig. 2: 

(a) there is a strong periodicity, of period 10 in m, the repetition of pattern with 
each increase of 10 in m being almost exact (the periodicity shows in bold zig-zag 
lines); 
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FIG. 1. Scheme of layer thicknesses in Models A, B, C, D, E, A being an averaged PEM-A. 
Depths of discontinuities are shown on the left side of each section. Figures in brackets below the 
letters A to E show the recurrence periods (in m) of the patterns of eigenfrequencies for the five 
models. 

FIG, 2. Graph of S against m for Model A; the recurrence period of 10 in m shows clearly. The 
ten almost flat lineations in the pattern of eigenfrequencies are shown by dashed lines. That be 
ginning at m = I carries the numbers (m = I, 11, 21, 3 1, 41, 51) of the modes whose frequencies 
lie on it. Similarly for the lines starting at m = 3 and m = 9 (to avoid confusion the other dashed 
lines carry no numbers). 

(b) alternatively each point lies on one of ten flat curves (dashed lines). Each 
such curve is close to a straight line nearly parallel to the axis of m. If the point 
corresponding to m = m, lies on a particular curve, then so do points corresponding 
to m = m, + 10, m, + 20, ml + 30 ,,.. . 

This combination of almost periodic (zig-zag) pattern and alignments we will call 
the patrerrr of eigenfrequuecies. 
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3. CHANGES OF PATTERN OF EIGENFREQUENCIES DUE TO SMALL CHANGES IN 
LAYER THICKNESS 

We now make slight shifts in the surfaces of discontinuity, leaving all other param- 
eters and overall thickness unchanged. The model defined in Section 2 is A. In B the 
lower discontinuity is raised by 50 km, in C it is lowered by 50 km. In D and E the 
lower discontinuity is not shifted, but in D the upper discontinuity is lowered by 
50 km, in E it is raised by 50 km. The five arrangements of layers are shown schema- 
tically in Fig. 1. 

For each model the values of S corresponding to m = 1, 2, 3,..., 60 have been 
calculated from (2.7); the results are exhibited in Figs. 2-6, which enable us to compare 

FIG. 3. Graph of S against m for Model B; the recurrence period is 25. 

FIG. 4. Graph of S against m for Model C. After an interval of 33 in m the pattern of eigen- 
frequencies repeats with reversed sign: this can be seen in the graph. The recurrence period of 66 
is too long to show in the graph. 
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FIG. 5. Graph of S against m for Model D; the recurrence period is 23. 

FIG. 6. Graph of S against m for Model E, the recurrence period is 17. The 17 dashed lines mark 
lineations: they are not as flat as those in Fig. 2 (Model A), for reasons given in the text. The dashed 
line starting at m = 1 carries the numbers of those models whose frequencies lie on it (m = 1, 18, 
35, 52). Similarly for the lineations starting at m = 3 and m = 16. 

the patterns of eigenfrequencies for A, B, C, D and E. First we notice the remarkable 
changes in recurrence period in m. This period is 10 for A, 25 for B, 23 for D, and 
17 for E. At first inspection there seems to be no recurrence in C; but closer observa- 
tion shows that values do repeat-though with opposite sign-when m is increased 
by 33. Thus a recurrence period of 66 exists, and would be seen if a longer series of 
values of m were used. 

We can check these observed values of recurrence period in m. Lapwood and Sato 
have pointed out [7] that if we write 2x1 = mcl,, 2x3 = ma,, to define 01, and az, 
then there will be recurrence with period k in m if there is an integral k such that 
both kor, and ka, are nearly integral multiples of 2 T. The most satisfactory procedure 
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is to list ka,lv and ka2/n for k = 1,2, 3,... and pick out an appropriate k. But in order 
to save space we quote only the values of k now under discussion for the five models. 
We find the following results; it is clear that the values given for ka,/rr and kcx,/r 
deviate only slightly from even integers. 

Model k k&r ka&r 

A 10 14.018 3.961 

B 25 35.994 9.946 

C 66 90.037 26.029 
D 23 32.128 10.167 

E 17 23.916 5.947 

The alignments corresponding to these values of k are shown in Figs. 2 and 6, 
but not in the other figures, since the addition of large numbers of roughly parallel 
line segments would make the figures confusing. We may note that the fact that 
kal/n and ka,/rr diverge more from even integers for E than for A means that the 
alignments in E diverge further from parallels to the m-axis than for A. 

4. CONCLUSIONS 

We have shown that, in this problem of the distribution of eigenfrequencies of 
overtones of torsional oscillations of a layered spherical shell, the pattern of eigen- 
frequencies is remarkably sensitive to small changes in the thickness of the layers. 
This happens because the pattern of eigenfrequencies is controlled by resonances 
between pulses reflected between surfaces of discontinuity. 

Thus if observational data were sufficiently refined the pattern of eigenfrequencies 
might become an excellent discriminator between proposed Earth-models with 
different layering, in so far as the models assumed first-order discontinuities at inner 
boundaries. 

The phenomenon which we have investigated here is common to all physical 
phenomena for which a sequence of eigenvalues arises from a Sturm-Liouville system 
with discontinuous coefficients. The spheroidal oscillations of a nonuniform spherical 
shell provide another example. 

We have much satisfaction in dedicating this paper to the memory of Professor 
Zipora Alterman, for it was in such exercises combining mathematical analysis and 
computing that she excelled and delighted. 
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